Toward a Unified Multiresolution Scheme in the Combined Physical/Stochastic Space for Stochastic Differential Equations

نویسندگان

  • Remi Abgrall
  • Pietro Marco Congedo
  • Gianluca Geraci
چکیده

In the present work, an innovative method for solving stochastic partial differential equations is presented. A multiresolution method permitting to compute statistics of the quantity of interest for a whatever form of the probability density function is extended to permit an adaptation in both physical and stochastic spaces. The efficiency of this strategy, in terms of refinement/derefinement capabilities, is displayed for stochastic algebraic and differential equations with respect to other more classical techniques, like Monte Carlo (MC) and Polynomial Chaos (PC). Finally, the proposed strategy is applied to the heat equation, displaying very promising results in terms of accuracy, convergence and regularity. Key-words: Multiresolution, Ordinary Differential Equations, Partial Differential Equation, Uncertainty Quantification, Heat Equation. ha l-0 07 09 46 6, v er si on 1 18 J un 2 01 2 Schéma multirésolution pour la résolution d’équations différentielles stochastiques dans l’espace couplé physique/stochastique Résumé : Dans cette étude, on présente une méthode innovante pour résoudre les équations aux dérivées partielles stochastiques. Une méthode, précédemment développée afin de calculer une quantité d’intérêt pour une fonction densité de probabilité quelconque, est étendue pour permettre l’adaptation dans les espaces physiques et stochastiques en même temps. L’efficacité de cette stratégie, en terme de capacité à raffiner/déraffiner, est démontrée sur des équations algébriques et différentielles par rapport à d’autres techniques plus classiques, tel que Monte Carlo et Chaos Polynomial. Enfin, cette stratégie est appliquée à l’équation de la chaleur avec des résultats très prometteurs en terme de précision, convergence et régularité. Mots-clés : Multirésolution, équations différentielles ordinaires, équation aux dérivées partielles, quantification de l’incertitude, équation de la chaleur. ha l-0 07 09 46 6, v er si on 1 18 J un 2 01 2 A MR approach in physical/stochastic space 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Study on efficiency of the Adomian decomposition method for stochastic differential equations

Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved.  Uniqueness and converg...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012